High speed multi-frequency impedance analysis of single particles in a microfluidic cytometer using maximum length sequences.

نویسندگان

  • Tao Sun
  • David Holmes
  • Shady Gawad
  • Nicolas G Green
  • Hywel Morgan
چکیده

A novel impedance spectroscopy technique has been developed for high speed single biological particle analysis. A microfluidic cytometer is used to measure the impedance of single micrometre sized latex particles at high speed across a range of frequencies. The setup uses a technique based on maximum length sequence (MLS) analysis, where the time-dependent response of the system is measured in the time domain and transformed into the impulse response using fast M-sequence transform (FMT). Finally fast Fourier transform (FFT) is applied to the impulse response to give the transfer-function of the system in the frequency domain. It is demonstrated that the MLS technique can give multi-frequency (broad-band) measurement in a short time period (ms). The impedance spectra of polystyrene micro-beads are measured at 512 evenly distributed frequencies over a range from 976.5625 Hz to 500 kHz. The spectral information for each bead is obtained in approximately 1 ms. Good agreement is shown between the MLS data and both circuit simulations and conventional AC single frequency measurements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Broadband single cell impedance spectroscopy using maximum length sequences

Measurements of the dielectric (or impedance) properties of cells can be used as a general characterization and diagnostic tool. In this paper, we describe a novel impedance spectroscopy technique for the analysis of single biological cells in suspension. The technique uses maximum length sequences (MLS) for periodic excitation signal in a microfluidic impedance cytometer. The method allows mul...

متن کامل

Impedance spectroscopy using maximum length sequences: application to single cell analysis.

A maximum length sequence (MLS) is used to perform broadband impedance spectroscopy on a dielectric sample. The method has a number of advantages over other pulse-based or frequency sweep techniques. It requires the application of a very short sequence of voltage steps in the microsecond range and therefore allows the measurement of time-dependent impedance of a sample with high temporal resolu...

متن کامل

High speed simultaneous single particle impedance and fluorescence analysis on a chip

In this paper, we describe the design and function of a microchip which is used to detect, analyse and count single micron-sized particles at high speed. The device uses multi-frequency electrical impedance together with single particle fluorescence spectroscopy. Impedance is measured using microelectrodes fabricated within a microfluidic channel. Optical measurements are made by focussing a be...

متن کامل

Analytical and Numerical Modeling Methods for Impedance Analysis of Single Cells On-chip

Electrical impedance spectroscopy (EIS) is a noninvasive method for characterizing the dielectric properties of biological particles. The technique can differentiate between cell types and provide information on cell properties through measurement of the permittivity and conductivity of the cell membrane and cytoplasm. In terms of lab-on-a-chip (LOC) technology, cells pass sequentially through ...

متن کامل

Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry.

Miniature high speed label-free cell analysis systems have yet to be developed, but have the potential to deliver fast, inexpensive and simple full blood cell analysis systems that could be used routinely in clinical practice. We demonstrate a microfluidic single cell impedance cytometer that performs a white blood cell differential count. The device consists of a microfluidic chip with micro-e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Lab on a chip

دوره 7 8  شماره 

صفحات  -

تاریخ انتشار 2007